On the Leakage Resilience of Ideal-Lattice Based Public Key Encryption
نویسندگان
چکیده
We consider the leakage resilience of the Ring-LWE analogue of the Dual-Regev encryption scheme (R-Dual-Regev for short), originally presented by Lyubashevsky et al. (Eurocrypt ’13). Specifically, we would like to determine whether the R-Dual-Regev encryption scheme remains IND-CPA secure, even in the case where an attacker leaks information about the secret key. We consider the setting where R is the ring of integers of the m-th cyclotomic number field, for m which is a power-of-two, and the Ring-LWE modulus is set to q ≡ 1 mod m. This is the common setting used in practice and is desirable in terms of the efficiency and simplicity of the scheme. Unfortunately, in this setting Rq is very far from being a field so standard techniques for proving leakage resilience in the general lattice setting, which rely on the leftover hash lemma, do not apply. Therefore, new techniques must be developed. In this work, we put forth a high-level approach for proving the leakage resilience of the R-Dual-Regev scheme, by generalizing the original proof of Lyubashevsky et al. (Eurocrypt ’13). We then give three instantiations of our approach, proving that the R-Dual-Regev remains IND-CPA secure in the presence of three natural, non-adaptive leakage classes.
منابع مشابه
QTRU: quaternionic version of the NTRU public-key cryptosystems
In this paper we will construct a lattice-based public-key cryptosystem using non-commutative quaternion algebra, and since its lattice does not fully fit within Circular and Convolutional Modular Lattice (CCML), we prove it is arguably more secure than the existing lattice-based cryptosystems such as NTRU. As in NTRU, the proposed public-key cryptosystem relies for its inherent securi...
متن کاملEEH: AGGH-like public key cryptosystem over the eisenstein integers using polynomial representations
GGH class of public-key cryptosystems relies on computational problems based on the closest vector problem (CVP) in lattices for their security. The subject of lattice based cryptography is very active and there have recently been new ideas that revolutionized the field. We present EEH, a GGH-Like public key cryptosystem based on the Eisenstein integers Z [ζ3] where ζ3 is a primitive...
متن کاملLeakage-Resilient Public-Key Encryption from Obfuscation
The literature on leakage-resilient cryptography contains various leakage models that provide different levels of security. In this work, we consider the bounded leakage and the continual leakage models. In the bounded leakage model (Akavia et al. – TCC 2009), it is assumed that there is a fixed upper bound L on the number of bits the attacker may leak on the secret key in the entire lifetime o...
متن کاملOn Generic Constructions of Circularly-Secure, Leakage-Resilient Public-Key Encryption Schemes
We propose generic constructions of public-key encryption schemes, satisfying key-dependent message (KDM) security for projections and different forms of key-leakage resilience, from CPA-secure private-key encryption schemes with two main abstract properties: (1) a form of (additive) homomorphism with respect to both plaintexts and randomness, and (2) reproducibility, providing a means for reus...
متن کاملDeniable Attribute Based Encryption for Branching Programs from LWE
Deniable encryption (Canetti et al. CRYPTO ’97) is an intriguing primitive that provides a security guarantee against not only eavesdropping attacks as required by semantic security, but also stronger coercion attacks performed after the fact. The concept of deniability has later demonstrated useful and powerful in many other contexts, such as leakage resilience, adaptive security of protocols,...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- IACR Cryptology ePrint Archive
دوره 2017 شماره
صفحات -
تاریخ انتشار 2017